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SUMMARY

We show that, under a general multiplicative-intercept model for risk, case-control data can
be analyzed by maximum likelihood as if they had arisen prospectively, up to an unidentifiable
multiplicative constant which depends on the relative sampling fractions. This generalizes earlier
work of Anderson (1972, 1979), by showing that not only the point estimates but also the standard
errors based on the observed information matrix are correct when the prospective likelihood is
maximized. Likelihood ratio testing is also valid under this broad class of risk models. Data on
disease status from a much larger cohort are shown to add no information to the estimation of
the covariate-related parameters.

Some key words: Case-control study; Choice-based sampling; Cohort study; Epidemiology; Expectation-
maximization, EM algorithm; Retrospective study.

1. INTRODUCTION

Anderson (1972) assumed a logistic model for risk of disease and showed that categorical data
arising from retrospective studies of independently sampled diseased and nondiseased individuals
can be analyzed as if the data had been collected in a prospective study, where one artificially
models the disease outcome as if binomially distributed, conditional on the covariates. Prentice
& Pyke (1979) later generalized this result to allow for continuous covariates, and Scott & Wild
(1989) showed that likelihood ratio testing is also valid in the same ‘choice-based’ sampling
scenario. Anderson (1979) showed that for discrete covariates, under very general assumptions
about the risk model, the maximization of the prospective likelihood produces the same point
estimates for odds ratios as the constrained maximization of the correct, retrospective likelihood.
The purpose of this paper is to develop an extension of these results to show that the prospective
analysis leads not only to valid point estimates, but to valid estimates of standard errors and
likelihood ratio testing, under the broad class of ‘multiplicative-intercept’ models described by
Hsieh, Manski & McFadden (1985).

2. APPROACH
We shall assume a general multiplicative-intercept model for risk, so that

P(D|z)/{1-P(D|2)} = hf(z; B),

where P(D|z) is the probability of disease given covariate vector z, f is, for fixed z, a twice-
differentiable function from R? to R*, h is an unknown positive scalar, and B is a p-vector of
unknown parameters. Note that linearity is not assumed, but z will be assumed discrete. For
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notational simplicity, we take disease status to be dichotomous, but generalization to polytomous
models is straightforward.

Our approach involves embedding the case-control study within the implicit but unobserved
larger population from which the study subjects were sampled, and treating the hypothetical
resulting data structure as a missing data problem. If we had access to the whole cohort, the
sampling structure would be that of a prospective study. With case-control sampling, we instead
generate separate random samples for cases and for controls.

The full-data likelihood based on the unobserved cohort is developed as follows. Let n, denote
the number of cases with covariate status determined, i.e. sampled for the case-control study, and
nc denote the number of controls. Let np(z) and n-(z) denote the respective numbers of cases
and controls found to be at value z of the covariate. Suppose an additional number of cases, mp,
and noncases, mc, have occurred in the larger cohort, but are missing the z information. We let
N = mp+ m¢c + np+ ne. Then we have the following hypothetical full-data likelihood appropriate
to the unobserved cohort:

{I1, P(z| D)™™ P(z| B)"<} P(D)"o""> P(D) """, (1)
Using the Bayesian inversion, P(z| D)= P(D|z)P(z)/ P(D), (1) can be rewritten as
{1, P(D|2)">? P(D|z)"<“H[], P(z)"o@* "<} {P(D)™>P(D)™} = L,L,L;.

This is similar to the likelihood described by Scott & Wild (1991) in the context of stratified
sampling in a case-control study. Note that factor L,, the prospective part of the likelihood,
depends only on the risk parameters, factor L, depends only on the nuisance parameters associated
with the distribution of Z, and factor L; depends on both. The question is: Can proper inference
be achieved by simply maximizing factor L,, that is, using only the retrospective data modelled
as if prospective? Our strategy will be to show that the two likelihoods, the improper prospective
likelihood based on the case-control data and the proper full-data likelihood, lead to the same
estimators for 8, with the same asymptotic variance estimators.

3. MAIN RESULT

PROPOSITION 1. Assume P(D|z)/{1— P(D|z)} hf(z; B). Let (h*, ﬁ*) denote the solutions to
the likelihood equations based on L,, and (h, B) denote the solutions based on the full-data likelihood,
L,L,L,, where the distribution P(z) is not parametrically specified. Then

= i*[{(np+ mp)nc}/{np(nc +me)}1.

The two log profile likelihoods constructed as functions of B are parallel; thus = B* and the two
estimated asymptotic variance-covariance matrices for B and B* based on the observed informations
coincide.

Proof. The proof relies on the fact that the maximum likelihood estimates for the full data
occur at a stationary point of the Expectation-Maximization (EM) algorithm; see Dempster, Laird
& Rubin (1977) and also Wu (1983). Let L denote the full-data likelihood, with all three of its
factors, where we include data from the hypothetical cohort in which the case-control data are
embedded. For the unobservable complete-data likelihood, where each subject provides complete
covariate information, the sufficient statistics would be the total counts at each level of z, Np(z)
and Nc(z). Using instead the full data we must in the E step estimate the conditional e_xpected
frequencies at each z; the estimate for Np(z) is

E{Np(z)|np(z), mp, B, h} = np(z) + mpP(z| D, B, h),

with a similar expression for Nc(z). The M step then plugs in these estimated frequencies and
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maximizes the L, form of the likelihood (1) over h and B. The estimate for P(z) is

np(z)+nc(z)

P(z)= N_[ﬁ(D|z)mD/13(D)+{l—ﬁ(D|Z)}mc/ﬁ(D)]

2

and these can be shown to sum to 1.
Next consider the case-control data. Let P*(D|z) denote the fitted probability based on solving
the likelihood equation for h that involves only L,, with B fixed, so that

P*(D|z)=h*f(z; B)/{1+ h*f(z; B)}.
Maximizing over h leads to:
Y. {np(2)+nc(2)}P*(D|z) =}, np(2) = np. (3)

Thus, the fitted numbers of cases must sum to the observed total number of cases. Uniqueness
of h* follows from monotonicity of P(D|z) = hf(z; B)/{1+hf(z; B)} in h.

A similar equality holds for the full data, with the estimated counts at each z appearing in
place of np(z) + nc(z) in (3), when estimating h so that, for any fixed B, the maximum likelihood
estimate, h is selected so that the fitted P(D) equals the observed proportion with disease,
(np+mp)/N.

Using this fact, together with (2) and the observation that if r = h/ h* then P(D|z)/ P*(D|z) =
r—(r—1)P(D|z), one can show by solving for r that, for 8 fixed,

{np(2) + nc (2)}P*(D|2)
{N —mp/P(D)}P(D|z)

P(z)= 4

if and only if
r={(np+mp)nc}/{np(nc+mec)}.

Thus A* = rh solves the likelihood equation involving L,, that is equation (3), if h solves the
analogous full-data likelihood equation.

We next show that the two log profile likelihoods are parallel which will imply both that B B*
and that the estimated asymptotic variance matrix for ,B based on the observed information in
the case-control analysis is identical to that based on the full-data likelihood.

Let S(B, h (B)) denote the profile likelihood function that, for fixed full data and B, maximizes
the likelihood over all choices of h and P(z). Let S*(8, h*(B)) denote the analogous profile
likelihood based on the case-control data and the prospective likelihood.

Consider In {S(8, h( B))}—In {S*(B, h*( BN} For each B, under the full-data likelihood A( B)
must be set so that P(D) (mp+np)/ N. Thus P(D) depends only on the data and not on .
Thus in considering the difference we can restrict attention to

Y. [nD(z) In {%%ll—zz-)j} +nc(z) In {%%%} +{np(z)+nc(z)} In {P(z)}]. 5)

One can algebraically show the following two identities

B(D|z)
‘“{ F*DIz)

1

} =In{r— (r—l)P(Dlz)},

ln{w-(——-l—) =~In(r)+In{r— (r—l)P(Dlz)}
and from (4)

In {f’(z)} =In{np(z)+n(z)}—In {N—-ﬁ(_l)—)} —In{r—(r— l)P(Dl z)}
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for r as in Proposition 1. Since r does not depend on B, substitution into (5) yields

E. | -1 n )+ {n(2) (2} 0 (no(2) +ne - mo() +ne@h in { -2 |

This depends on the data, but not on the parameter B. The log profile likelihoods are therefore
parallel, implying (Richards, 1961) that the two estimated asymptotic variances for 8 based on
the observed information matrices are identical. This completes the proof. O

4. RELATED RESULTS

Some corollaries of this result and its proof follow straightforwardly. Generalization to poly-
tomous outcome data is quite direct, and demonstration of this will be left to the reader. We only
note that the case-control estimated risk function is again related to the full-data estimates via
the sampling fractions, as follows:

PH(Dy|z)=EPil2)
Zj s;P(D;|z)
where s; = np,/(np,+mp,).

Although we initially posited the existence of a larger embedding cohort as a device to aid in
the proof, it might happen that in certain circumstances we actually have access to the marginal
disease status data from a larger, more complete population. One might ask whether the resulting
improvement in precision of estimation of the background disease rate can improve precision of

- estimation for the B parameters. The answer is No, as stated in the following Corollary.

CoROLLARY 1. Data on disease status from a larger cohort does not add information to the
estimation of B under any multiplicative-intercept model for risk.

Thus, one cannot improve precision by bringing in information from the larger cohort, unless
that information includes data on the covariates of primary interest.

Finally, we have the following Corollary, which generalizes the result of Scott & Wild (1989),
at least for the case where Z is discrete.

COROLLARY 2. Likelihood ratio testing based on the prospective analysis of case-control data is
valid for multiplicative-intercept models, for tests involving parameters in B.

Proof. The proof follows immediately from the proof of Proposition 1, since the difference
between the logarithm of the maximized full-data likelihood and that of the maximized case-control
data likelihood depends on the data, but not on B. Since likelihood ratio tests are valid for the
full-data likelihood, large-sample validity for likelihood ratio testing based on the case-control
likelihood follows. O

5. DiscussioN

Although identifiability is obvious for the special case of the linear logistic model, there is no
guarantee that the B parameter will be identifiable in general. Consider, for example, an odds-
additive model, where P(D|z)/{1— P(D|z)} is zB. This sort of model, where f(z; B) is simply
linear, can easily be fitted in GLiM. If the disease is rare, as is typically the situation in a case-control
study, then this is approximately equivalent to simple linearity for P(D|z). Such a model may
be of particular interest in aetiological investigations since it implies approximate additivity of
effect for the modelled factors. It is clear from Proposition 1 that under this model B can be
specified only up to an unknown multiplicative factor, so that we can only hope to be able to
estimate the relative effect ratios, 8;/8;, for the components of B. Likelihood ratio testing would,
however, still be valid for comparing nested additive models. Since independent action of two
exposures is often modelled by additivity in their joint effect, aetiological hypotheses related to
synergism can thus be tested using case-control data. See Wacholder & Weinberg (1993) for an
example.
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